

Ruthenium(III) Chloride Catalyzed **Oxidation of Pyrene and 2,7-Disubstitued** Pyrenes: An Efficient, One-Step Synthesis of Pyrene-4,5-diones and Pyrene-4,5,9,10-tetraones

Jie Hu, Dong Zhang, and Frank W. Harris*

Maurice Morton Institute of Polymer Science, The University of Akron, Akron, Ohio 44325

fharris@uakron.edu

Received August 25, 2004

R = H. t-Butyl, or n-Hexyl

Pyrene and 2,7-disubstituted pyrenes have been oxidized with ruthenium(III) chloride (RuCl₃) and sodium periodate $(NaIO_4)$ under very mild conditions to 4.5-diones or 4.5.9,-10-tetraones. Thus, the oxidation has been controlled by varying the amount of oxidant and reaction temperature to proceed exclusively at the pyrene 4- and 5-positions or at the 4-, 5-, 9-, and 10-positions.

K-region oxidation of pyrene has been studied extensively because of its suspected role in the carcinogenicity of fused arenes.¹ One of the oxidation products, pyrene-4,5-dione (2a), is also important because it serves as an intermediate in the preparation of other fused-ring molecules, which are of interest from both a theoretical and a practical point of view.² Further oxidation of pyrene-4,5-dione gives pyrene-4,5,9,10-tetraone (3a), which has been used in metal complex formation and as a monomer in step growth polymerizations.^{2a,3} Previous attempts to prepare 2 and 3 directly from pyrene have been largely unsuccessful since sites other than C(4) and

SCHEME 1

C(5) more readily undergo oxidation.^{2c,4} Dione 2a has been prepared in low yield by the oxidation of pyrene with the highly toxic osmium tetroxide.^{2c} Compound **2a**, **3a**, the 2,7-disubstituted pyrenedione **2b**, and the pyrene tetraone **3b** have been prepared by multistep synthetic routes.^{3f,5}

We recently prepared a series of fused, liquid crystalline, substituted bisphenazines by treating pyrene-4,5,9,-10-tetraones with 1,2-dialkoxy-4,5-diaminobenzenes.⁶ To avoid the multistep routes to the tetraones, we reinvestigated the oxidation of pyrene. A heterogeneous mixture of ruthenium(III) chloride (RuCl₃) and sodium periodate (NaIO₄) in methylene chloride (CH₂Cl₂), water, and acetonitrile $(CH_3CN)^7$ selectively provided the dione 2a or the tetraone **3a** depending on the reaction temperature and the amount of oxidant used. The reaction conditions were very mild. The diones were obtained at room temperature with 4 equiv of $NaIO_4$ (Scheme 1) while the tetraone was formed at 30-40 °C with 8 equiv of NaIO₄ (Scheme 2). This was surprising since previous work with ruthenium-catalyzed oxidations of arenes had resulted in either dicarboxylic acids, tetacarboxylic acids, or diols.8

^{*} To whom correspondence should be addressed.

^{(1) (}a) Harvey, R. G. In Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity; Cambridge University Press: New York, 1991. (b) Goh, S. H.; Harvey, R. G. J. Am. Chem. Soc. 1973, 95, 242. (c) Moriarty, R. M.; Dansette, P.; Jerina, D. M. Tetrahedron Lett. **1975**, 30, 2557. (d) Vanderford, M.; Pfaender, F. K. Proc. Int. Conf. Remediat.

^{30, 2557. (}d) Vanderford, M.; Pfaender, F. K. Proc. Int. Conf. Remediat. Chlorinated Recalcitrant Compds., 3rd, U.S. 2002, 2323.
(2) (a) Ramirez, F.; Bhatia, S. B.; Patwardhan, A. V.; Chen, E. H.; Smith, C. P. J. Org. Chem. 1968, 33, 20. (b) Pascal, R. A., Jr.; McMillan, W. D.; Van Engen, D.; Eason, R. G. J. Am. Chem. Soc. 1987, 109, 4660.
(c) Oberender, F. G.; Dixon, J. A. J. Org. Chem. 1959, 24, 1226. (d) Tintel, C.; Terheijden, J.; Lughtenburg, J.; Cornelisse, J. Tetrahedron Lett. 1987, 28, 2060. (e) Kazunga, C.; Aitken, M. D. Appl. Environ. Microbiol. 2000, 66, 1917. (f) Guthrie-Nichols, E.; Grasham, A.; Kazunga, C.; Sangraigh, B.; Cold, A.; Bortisturgki, J.; Solloum, M.; Kazunga, C.; Sangaiah, R.; Gold, A.; Bortiatynski, J.; Salloum, M.; Hatcher, P. Environ. Toxicol. Chem. 2003, 22, 40. (g) Funk, R. L.; Young, E. R. R.; Williams, R. M.; Flanagan, M. F.; Cecil, T. L. J. Am. Chem. Soc. 1996, 118, 3291.

^{(3) (}a) Ishow, E.; Gourdon, A.; Launay, J. P. Chem. Commun. 1998, 17, 1909. (b) Ishow, E.; Gourdon, A.; Launay, J. P.; Chiorboli, C.; Scandola, F. Inorg. Chem. **1999**, 38, 1504. (c) Miura, Y.; Yamano, E.; Miyazawa, A.; Tashiro, M. J. Chem. Soc., Perkin Trans. 2 1997, 359.
 (d) Wehr, G. Makromol. Chem. 1976, 177, 351. (e) Imai, K.; Kurihara, M.; Mathias, L.; Wittamann, J.; Alston, W. B.; Stille, J. K. Macromol-ecules 1973, 6, 158. (f) Stille, J. K.; Mainen, E. L. Macromolecules 1968, 1.36

^{(4) (}a) Dewar, M. J. S. J. Am. Chem. Soc. 1952, 74, 3357. (b) Fatiadi, (c) (a) Young E. R. R.; Funk, R. L. J. Org. Chem. 1998, 63, 9995. (b)

Cho, H.; Harvey, R. G. *Tetrahedron Lett.* **1974**, *16*, 1491. (6) Hu, J.; Zhang, D.; Jin, S.; Cheng, S. Z. D.; Harris, F. W. *Chem.*

⁽⁷⁾ Ashby, E. C.; Goel, A. B. J. Org. Chem. **1981**, *46*, 3936.

These procedures were then used to prepare the 2,7disubstituted pyrenediones **2b**, **2c** and tetraones **3b**, **3c**. 2,7-Di(*n*-hexyl)pyrene-4,5-dione (**2c**) and 2,7-di-*n*-hexylpyrene-4,5,9,10-tetraone (**3c**) were prepared from the previously unknown 2,7-di-*n*-hexylpyrene, which was synthesized in three steps from 4,5,9,10-tetrahydropyrene.

Experimental Section

Pyrene (1a) was purchased from Acros and used as received. 2,7-Di-*tert*-butylpyrene (1b) was synthesized by using the reported procedure in greater than 90% yield.⁹ Preparation of 2,7-di-*n*-hexylpyrene (1c) is described in the Supporting Information.

General Procedure for the Preparation of Pyrene-4,5diones (2) (Scheme 1). To a solution of pyrenes (1) (10 mmol) in CH₂Cl₂ (40.0 mL) and CH₃CN (40.0 mL) were added NaIO₄ (10.0 g, 46.8 mmol), H₂O (50.0 mL), and RuCl₃·xH₂O (0.20 g, 0.96 mmol). The dark brown suspension was stirred at room temperature overnight. The reaction mixture was poured into 500 mL of H₂O and the organic phase was separated. The aqueous phase was extracted with CH₂Cl₂ (3×50 mL). The CH₂-Cl₂ extracts were combined with the organic phase and washed with H₂O (3×200 mL) to give an dark orange solution. The solvent was removed under reduced pressure to afford a dark orange solid. Thin-layer chromatography (TLC), using an ethyl acetate/hexanes (2/5) mixture, indicated the presence of several byproducts, which were not isolated. Column chromatography (CH₂Cl₂) gave pure products as bright orange crystals.

2a: yield 45%; mp 299–302 °C (lit.^{5a} mp 302–304 °C); ¹H NMR (300 MHz, CDCl₃) δ 8.47 (dd, 2H), 8.16 (dd, 2H), 7.82 (s, 2H), 7.76 (t, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 180.5, 135.9, 132.1, 130.2, 130.20, 128.5, 128.1, 127.4; mass calcd for C₁₆H₈O₂ 232.05, found 232.05 (ESI).

2b: yield 46%; mp 241–244 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.54 (dd, 2H), 8.12 (dd, 2H), 7.79 (s, 2H), 1.49 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 181.2, 51.3, 132.1, 132.0, 130.0, 128.5, 127.5, 126.7, 35.4, 31.4; mass calcd for C₂₄H₂₄O₂ 344.18, found 344.18 (ESI).

2c: yield 40%; mp 138–140 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.15 (dd, 2H), 7.78 (dd, 2H), 7.60 (s, 2H), 2.78 (t, 4H), 1.72 (p,

(8) (a) Pryor, K. E.; Shipps, G. W., Jr.; Skyler, D. A.; Rebek, J., Jr. *Tetrahedron* **1998**, *54*, 4107. (b) Stock, L. M.; Wang, S. H. *Energy Fuels* **1989**, *3*, 533. (c) Jeyaraman, R.; Murray, R. W. J. Am. Chem. Soc. **1984**, *106*, 2462.

(9) Yamato, T.; Fujumoto, M.; Miyazawa, A.; Matsuo, K. J. Chem. Soc., Perkin Trans. 1 1997, 1201.

4H), 1.32 (m, 12H), 0.89 (t, 6H); $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃) δ 180.6, 142.8, 134.9, 131.9, 130.7, 129.6, 127.0, 126.6, 35.9, 31.9, 31.3, 29.2, 22.8, 14.3; mass calcd for $C_{28}H_{32}O_2$ 400.24, found 400.24 (ESI).

General Procedure for the Preparation of Pyrene-4,5,9,-10-tetraones (3) (Scheme 2). To a solution of the pyrene (1) (10 mmol) in CH_2Cl_2 (40.0 mL) and CH_3CN (40.0 mL) were added NaIO₄ (17.5 g, 81.8 mmol), H₂O (50.0 mL), and RuCl₃ $xH_2O(0.25 \text{ g}, 1.2 \text{ mmol})$. The dark brown suspension was heated at 30–40 $^{\circ}\!\bar{\mathrm{C}}$ overnight. The reaction mixture was poured into 200 mL of H₂O, and the solid was removed by filtration. After the dark green product was washed with 500 mL of H₂O, the organic phase was separated. The aqueous phase was extracted with CH_2Cl_2 (3 × 50 mL). The CH_2Cl_2 extracts were combined with the organic phase and washed with H_2O (3 × 200 mL) to give a dark green solution. The solvent was removed under reduced pressure to afford a dark green solid that was combined with the dark green product. Thin-layer chromatography (TLC), using an ethyl acetate/hexanes (2/5) mixture, indicated the presence of several byproducts, which were not isolated. Column chromatography (CH₂Cl₂) gave pure products as bright orange crystals.

3a: yield 36%; mp >350 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 8.32 (d, 4H), 7.71 (t, 2H); ¹³C NMR (N/A, solubility too low); mass calcd for C₁₆H₆O₄ 262.03, found 262.03 (ESI).

3b: yield 47%; mp 339–342 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.47(s, 4H), 1.42 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 178.4, 155.1, 134.05 132.4, 130.8, 35.6, 30.9; mass calcd for C₂₄H₂₂O₄ 374.15, found 374.15 (ESI).

3c: yield 30%; mp 199–202 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.25 (s, 4H), 2.75 (t, 4H), 1.69 (t, 4H), 1.33 (m, 12H), 0.89 (t, 6H); 13 C NMR (75 MHz, CDCl₃) δ 178.3, 146.8, 136.8, 132.7, 130.9, 35.6, 31.7, 30.8, 29.0, 22.7, 14.2; mass calcd for $C_{28}H_{30}O_4$ 430.21, found 430.21 (ESI).

Acknowledgment. The support of this work by the Air Force/UA Collaborative Center in Polymer Photonics is gratefully acknowledged. The Center is funded by the Air Force Office of Scientific Research, the Air Force Materials Laboratory, and The University of Akron.

Supporting Information Available: Preparation of 2,7di-*n*-hexyl-pyrene (1c) and ¹H and ¹³C spectra of all the compounds were not listed in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

JO048509Q